Senin, 03 Juni 2013

komputasi & pararel prosessing


Parallel PROCESSING
Pemrosesan paralel (parallel processing) adalah penggunakan lebih dari satu CPU untuk menjalankan sebuah program secara simultan.
Idealnya, parallel processing membuat program berjalan lebih cepat karena semakin banyak CPU yang digunakan. 


TUJUAN PARALLEL PROCESSING
Tujuan utama dari pemrosesan paralel adalah untuk meningkatkan performa komputasi. Semakin banyak hal yang bisa dilakukan secara bersamaan (dalam waktu yang sama), semakin banyak pekerjaan yang bisa diselesaikan. 

PARALLEL PROCESSING
Komputasi paralel

Komputasi paralel adalah salah satu teknik melakukan komputasi secara bersamaan dengan memanfaatkan beberapa komputer secara bersamaan.
Biasanya diperlukan saat kapasitas yang diperlukan sangat besar, baik karena harus mengolah data dalam jumlah besar ataupun karena tuntutan proses komputasi yang banyak.

Untuk melakukan aneka jenis komputasi paralel ini diperlukan infrastruktur mesin paralel yang terdiri dari banyak komputer yang dihubungkan dengan jaringan dan mampu bekerja secara paralel untuk menyelesaikan satu masalah. Untuk itu diperlukan aneka perangkat lunak pendukung yang biasa disebut sebagai middleware yang berperan untuk mengatur distribusi pekerjaan antar node dalam satu mesin paralel. Selanjutnya pemakai harus membuat pemrograman paralel untuk merealisasikan komputasi. 
Pemrograman Paralel sendiri adalah teknik pemrograman komputer yang memungkinkan eksekusi perintah/operasi secara bersamaan. Bila komputer yang digunakan secara bersamaan tersebut dilakukan oleh komputer-komputer terpisah yang terhubung dalam satu jaringan komputer, biasanya disebut sistem terdistribusi. Bahasa pemrograman yang populer digunakan dalam pemrograman paralel adalah MPI (Message Passing Interface) dan PVM (Parallel Virtual Machine).

Yang perlu diingat adalah komputasi paralel berbeda dengan multitasking. Pengertian multitasking adalah komputer dengan processor tunggal mengeksekusi beberapa tugas secara bersamaan. Walaupun beberapa orang yang bergelut di bidang sistem operasi beranggapan bahwa komputer tunggal tidak bisa melakukan beberapa pekerjaan sekaligus, melainkan proses penjadwalan yang berlakukan pada sistem operasi membuat komputer seperti mengerjakan tugas secara bersamaan. Sedangkan komputasi paralel sudah dijelaskan sebelumnya, bahwa komputasi paralel menggunakan beberapa processor atau komputer. Selain itu komputasi paralel tidak menggunakan arsitektur Von Neumann.

Untuk lebih memperjelas lebih dalam mengenai perbedaan komputasi tunggal (menggunakan 1 processor) dengan komputasi paralel (menggunakan beberapa processor), maka kita harus mengetahui terlebih dahulu pengertian mengenai model dari komputasi. Ada 4 model komputasi yang digunakan, yaitu:
  • SIMD
  • SIMD
  • MISD
  • MIMD

SISD

Yang merupakan singkatan dari Single Instruction, Single Data adalah satu-satunya yang menggunakan arsitektur Von Neumann. Ini dikarenakan pada model ini hanya digunakan 1 processor saja. Oleh karena itu model ini bisa dikatakan sebagai model untuk komputasi tunggal. Sedangkan ketiga model lainnya merupakan komputasi paralel yang menggunakan beberapa processor. Beberapa contoh komputer yang menggunakan model SISD adalah UNIVAC1, IBM 360, CDC 7600, Cray 1 dan PDP 1.


SIMD

Yang merupakan singkatan dari Single Instruction, Multiple Data. SIMD menggunakan banyak processor dengan instruksi yang sama, namun setiap processor mengolah data yang berbeda. Sebagai contoh kita ingin mencari angka 27 pada deretan angka yang terdiri dari 100 angka, dan kita menggunakan 5 processor. Pada setiap processor kita menggunakan algoritma atau perintah yang sama, namun data yang diproses berbeda. Misalnya processor 1 mengolah data dari deretan / urutan pertama hingga urutan ke 20, processor 2 mengolah data dari urutan 21 sampai urutan 40, begitu pun untuk processor-processor yang lain. Beberapa contoh komputer yang menggunakan model SIMD adalah ILLIAC IV, MasPar, Cray X-MP, Cray Y-MP, Thingking Machine CM-2 dan Cell Processor (GPU).


MISD

Yang merupakan singkatan dari Multiple Instruction, Single Data. MISD menggunakan banyak processor dengan setiap processor menggunakan instruksi yang berbeda namun mengolah data yang sama. Hal ini merupakan kebalikan dari model SIMD. Untuk contoh, kita bisa menggunakan kasus yang sama pada contoh model SIMD namun cara penyelesaian yang berbeda. Pada MISD jika pada komputer pertama, kedua, ketiga, keempat dan kelima sama-sama mengolah data dari urutan 1-100, namun algoritma yang digunakan untuk teknik pencariannya berbeda di setiap processor. Sampai saat ini belum ada komputer yang menggunakan model MISD.


MIMD

Yang merupakan singkatan dari Multiple Instruction, Multiple Data. MIMD menggunakan banyak processor dengan setiap processor memiliki instruksi yang berbeda dan mengolah data yang berbeda. Namun banyak komputer yang menggunakan model MIMD juga memasukkan komponen untuk model SIMD. Beberapa komputer yang menggunakan model MIMD adalah IBM POWER5, HP/Compaq AlphaServer, Intel IA32, AMD Opteron, Cray XT3 dan IBM BG/L.

Singkatnya untuk perbedaan antara komputasi tunggal dengan komputasi paralel, bisa digambarkan pada gambar di bawah ini:


Penyelesaian Sebuah Masalah pada Komputasi Tunggal
 




Penyelesaian Sebuah Masalah pada Komputasi Paralel


Dari perbedaan kedua gambar di atas, kita dapat menyimpulkan bahwa kinerja komputasi paralel lebih efektif dan dapat menghemat waktu untuk pemrosesan data yang banyak daripada komputasi tunggal.
Dari penjelasan-penjelasan di atas, kita bisa mendapatkan jawaban mengapa dan kapan kita perlu menggunakan komputasi paralel. Jawabannya adalah karena komputasi paralel jauh lebih menghemat waktu dan sangat efektif ketika kita harus mengolah data dalam jumlah yang besar. Namun keefektifan akan hilang ketika kita hanya mengolah data dalam jumlah yang kecil, karena data dengan jumlah kecil atau sedikit lebih efektif jika kita menggunakan komputasi tunggal.
Komputasi paralel membutuhkan :
· algoritma
· bahasa pemrograman
· compiler

Pemrograman paralel adalah teknik pemrograman komputer yang memungkinkan eksekusi perintah/operasi secara bersamaan baik dalam komputer dengan satu (prosesor tunggal) ataupun banyak (prosesor ganda dengan mesin paralel) CPU.
Tujuan utama dari pemrograman paralel adalah untuk meningkatkan performa komputasi.

* Message Passing Interface (MPI)
MPI adalah sebuah standard pemrograman yang memungkinkan pemrogram
untuk membuat sebuah aplikasi yang dapat dijalankan secara paralel.
MPI menyediakan fungsi-fungsi untuk menukarkan
antar pesan. Kegunaan MPI yang lain adalah
1. menulis kode paralel secara portable
2. mendapatkan performa yang tinggi dalam pemrograman paralel, dan
3. menghadapi permasalahan yang melibatkan hubungan data irregular atau dinamis yang tidak
begitu cocok dengan model data paralel.

* Message Passing Interface (MPI)
MPI adalah sebuah standard pemrograman yang memungkinkan pemrogram
untuk membuat sebuah aplikasi yang dapat dijalankan secara paralel.
MPI menyediakan fungsi-fungsi untuk menukarkan
antar pesan. Kegunaan MPI yang lain adalah
1. menulis kode paralel secara portable
2. mendapatkan performa yang tinggi dalam pemrograman paralel, dan
3. menghadapi permasalahan yang melibatkan hubungan data irregular atau dinamis yang tidak
begitu cocok dengan model data paralel.

Pengertian Komputasi
Komputasi adalah algoritma yang digunakan untuk menemukan suatu cara dalam memecahkan masalah dari sebuah data input. Data input disini adalah sebuah masukan yang berasal dari luar lingkungan sistem. Komputasi ini merupakan bagian dari ilmu komputer berpadu dengan ilmu matematika. Secara umum ilmu komputasi adalah bidang ilmu yang mempunyai perhatian pada penyusunan model matematika dan teknik penyelesaian numerik serta penggunaan komputer untuk menganalisis dan memecahkan masalah-masalah ilmu (sains). Dalam penggunaan secara umum, biasanya berupa penerapan simulasi komputer atau berbagai bidang keilmuan, tetapi dalam perkembangannya digunakan juga untuk menemukan prinsip-prinsip baru yang mendasar terhadap bidang ilmu yang mendasari teori ini. Bidang ini berbeda dengan ilmu komputer (computer science), yang mengkaji komputasi, komputer dan pemrosesan informasi. Bidang ini juga berbeda dengan teori dan percobaan sebagai bentuk tradisional dari ilmu dan kerja keilmuan. Dalam ilmu alam, pendekatan ilmu komputasi dapat memberikan berbagai pemahaman baru, melalui penerapan model-model matematika dalam program komputer berdasarkan landasan teori yang telah berkembang, untuk menyelesaikan masalah-masalah nyata dalam ilmu tersebut.

Pengertian Komputasi Modern
Komputasi modern bisa disebut sebuah konsep sistem yang menerima intruksi-intruksi dan menyimpannya dalam sebuah memory, memory disini bisa juga dari memory komputer. Oleh karena pada saat ini kita melakukan komputasi menggunakan komputer maka bisa dibilang komputer merupakan sebuah komputasi modern. Konsep ini pertama kali digagasi oleh John Von Neumann (1903-1957). Dalam kerjanya komputasi modern menghitung dan mencari solusi dari masalah yang ada, dan perhitungan yang dilakukan itu meliputi:
1.    Akurasi
2.    Kecepatan
3.    ProblemVolume Besar
4.    Modelling
5.    Kompleksitas

Sejarah Komputasi Modern
Dalam perkembangan komputasi modern, kita tidak bisa melupakan begitu saja orang dibalik perkembangan komputasi modern yang merubah semua pekerjaan jadi lebih mudah. Sejarah komputasi dimulai dari seseorang ilmuan yang ternama di bidang teknologi. Permulaan komputasi modern dimulai pada saat tahun 1926 oleh ilmuan yang berasal dari hungaria yang bernama John Von Neumann. 

Von Neumann seorang ilmuan yang belajar dari Berlin dan Zurich dan mendapatkan diploma pada bidang teknik kimia pada tahun 1926. Pada tahun yang sama dia mendapatkan gelar doktor pada bidang matematika dari Universitas Budapest. Berkat keahlian dan kepiawaiannya Von Neumann dalam bidang teori game yang melahirkan konsep seluler automata, teknologi bom atom, dan komputasi modern yang kemudian melahirkan komputer. Kegeniusannya dalam matematika telah terlihat semenjak kecil dengan mampu melakukan pembagian bilangan delapan digit (angka) di dalam kepalanya. Setelah mengajar di Berlin dan Hamburg, Von Neumann pindah ke Amerika pada tahun 1930 dan bekerja di Universitas Princeton serta menjadi salah satu pendiri Institute for Advanced Studies. Dipicu ketertarikannya pada hidrodinamika dan kesulitan penyelesaian persamaan diferensial parsial nonlinier yang digunakan, Von Neumann kemudian beralih dalam bidang komputasi. Sebagai konsultan pada pengembangan ENIAC, dia merancang konsep arsitektur komputer yang masih dipakai sampai sekarang. Arsitektur Von Nuemann adalah komputer dengan program yang tersimpan (program dan data disimpan pada memori) dengan pengendali pusat, I/O, dan memori. berdasarkan beberapa definisi di atas, maka komputasi modern dapat diartikan sebagai suatu pemecahan masalah berdasarkan suatu inputan dengan menggunakan algoritma dimana penerapannya menggunakan berbagai teknologi yang telah berkembang seperti komputer.
Macam-macam komputasi modern:
Untuk mengetahui jenis-jenis dari komputasi modern, kita harus mengetahui dahulu karakteristik dari komputasi modern.
Karakteristik komputasi modern ada 3 macam, yaitu :
1.   Komputer-komputer penyedia sumber daya bersifat heterogenous karena terdiri dari berbagai jenis perangkat keras, sistem operasi, serta aplikasi yang terpasang.
2.    Komputer-komputer terhubung ke jaringan yang luas dengan kapasitas bandwidth yang beragam.
3.    Komputer maupun jaringan tidak terdedikasi, bisa hidup atau mati sewaktu-waktu tanpa jadwal yang jelas.

Berikut merupakan contoh dari jenis-jenis komputasi modern:
1. Mobile Computing atau Komputasi Bergerak
Mobile computing (komputasi bergerak) merupakan kemajuan teknologi komputer sehingga dapat berkomunikasi menggunakan jaringan tanpa menggunakan kabel serta mudah dibawa atau berpindah tempat, tetapi berbeda dengan komputasi nirkabel.
2. Grid Computing
Komputasi grid memanfaatkan kekuatan pengolahan idle berbagai unit komputer, dan menggunakan kekuatan proses untuk menghitung satu pekerjaan.
3. Cloud Computing atau Komputasi Awan
Cloud computing adalah perluasan dari konsep pemrograman berorientasi objek abstraksi. Abstraksi, sebagaimana dijelaskan sebelumnya, menghapus rincian kerja yang kompleks dari visibilitas. Komputasi awan adalah sebuah paradigm baru dari konsep yang sebenarnya sudah ada. Beberapa aplikasi yang sangat akrab dari cloud computing adalah icloud (produk dari Apple) dimana user menyimpan data-data phonebook mereka di server Apple, bukan lagi di handphone mereka. Selain contoh it ada juga contoh dari satu provider Indonesia XL, yaitu XL Klik, dimana dengan menginstall XL Klik User sudah dapat menikmati beberapa aplikasi jejaring social, yang sebenarnya aplikasi itu terinstall di server XL, bukan di handphone mereka. Sehingga mereka bisa merasakan hp mereka seperti handphone yang jauh lebih pintar dan mahal.

Contoh implementasi dalam bidang ilmu Komputasi Modern
Implementasi yang jelas terlihat ada pada ilmu Bioinformatika. Berikut akan dibahas bagaimana bioinformatika itu termasuk dalam implementasi dalam bidang ilmu komputasi modern.

Pengertian Bioinformatika
Bioinformatika, sesuai dengan asal katanya yaitu “bio” dan “informatika”, adalah gabungan antara ilmu biologi dan ilmu teknik informasi (TI). Pada umumnya, Bioinformatika didefenisikan sebagai aplikasi dari alat komputasi dan analisa untuk menangkap dan menginterpretasikan data-data biologi. Ilmu ini merupakan ilmu baru yang yang merangkup berbagai disiplin ilmu termasuk ilmu komputer, matematika dan fisika, biologi, dan ilmu kedokteran, dimana kesemuanya saling menunjang dan saling bermanfaat satu sama lainnya.
Istilah bioinformatics mulai dikemukakan pada pertengahan era 1980-an untuk mengacu pada penerapan komputer dalam biologi. Namun demikian, penerapan bidang-bidang dalam bioinformatika (seperti pembuatan basis data dan pengembangan algoritma untuk analisis sekuens biologis) sudah dilakukan sejak tahun 1960-an.
Ilmu bioinformatika lahir atas insiatif para ahli ilmu komputer berdasarkan artificial intelligence. Mereka berpikir bahwa semua gejala yang ada di alam ini bisa diuat secara artificial melalui simulasi dari gejala-gejala tersebut. Untuk mewujudkan hal ini diperlukan data-data yang yang menjadi kunci penentu tindak-tanduk gejala alam tersebut, yaitu gen yang meliputi DNA atau RNA. Bioinformatika ini penting untuk manajemen data-data dari dunia biologi dan kedokteran modern. Perangkat utama Bioinformatika adalah program software dan didukung oleh kesediaan internet.
Perkembangan teknologi DNA rekombinan memainkan peranan penting dalam lahirnya bioinformatika. Teknologi DNA rekombinan memunculkan suatu pengetahuan baru dalam rekayasa genetika organisme yang dikenala bioteknologi. Perkembangan bioteknologi dari bioteknologi tradisional ke bioteknologi modren salah satunya ditandainya dengan kemampuan manusia dalam melakukan analisis DNA organisme, sekuensing DNA dan manipulasi DNA.
Sekuensing DNA satu organisme, misalnya suatu virus memiliki kurang lebih 5.000 nukleotida atau molekul DNA atau sekitar 11 gen, yang telah berhasil dibaca secara menyeluruh pada tahun 1977. Kemudia Sekuen seluruh DNA manusia terdiri dari 3 milyar nukleotida yang menyusun 100.000 gen dapat dipetakan dalam waktu 3 tahun, walaupun semua ini belum terlalu lengkap. Saat ini terdapat milyaran data nukleotida yang tersimpan dalam database DNA, GenBank di AS yang didirikan tahun 1982. Bioinformatika (bahasa Inggris: bioinformatics) adalah ilmu yang mempelajari penerapan teknik komputasional untuk mengelola dan menganalisis informasi biologis. Bidang ini mencakup penerapan metode-metode matematika, statistika, dan informatika untuk memecahkan masalah-masalah biologis, terutama dengan menggunakan sekuens DNA dan asam amino serta informasi yang berkaitan dengannya. Contoh topik utama bidang ini meliputi basis data untuk mengelola informasi biologis, penyejajaran sekuens (sequence alignment), prediksi struktur untuk meramalkan bentuk struktur protein maupun struktur sekunder RNA, analisis filogenetik, dan analisis ekspresi gen.
Membicarakan bioinformatika, tak dapat lepas dari proses lahirnya bidang tersebut. Sebagaimana diketahui, bioteknologi dan teknologi informasi merupakan dua di antara berbagai teknologi penting yang mengalami perkembangan signifikan dalam beberapa tahun terakhir ini. Bioteknologi berakar dari bidang biologi, sedangkan perkembangan teknologi informasi tak dapat dilepaskan dari matematika. Umumnya biologi dan matematika dianggap adalah database utama dalam biologi molekuler, yang dikelola oleh NCBI (National Center for Biotechnology Information) di AS.




Cabang ilmu Bioinformatika
Bioinformatika merupakan suatu bidang interdisipliner. Banyak cabang-cabang disiplin ilmu yang terkait dengan Bioinformatika sehingga banyak pilihan bagi yang ingin mendalami Bioinformatika. Beberapa bidang yang terkait dengan Bioinformatika antara lain:
1.    Biophysics
Biophysics adalah sebuah bidang interdisipliner yang mengaplikasikan teknik-teknik dari ilmu Fisika untuk memahami struktur dan fungsi biologi (British Biophysical Society).
2.    Computational Biology
Computational biology merupakan bagian dari Bioinformatika yang paling dekat dengan bidang Biologi umum klasik. Fokus dari computational biology adalah gerak evolusi, populasi, dan biologi teoritis daripada biomedis dalam molekul dan sel.
3.    Medical Informatics
Medical informatics adalah sebuah disiplin ilmu yang baru yang didefinisikan sebagai pembelajaran, penemuan dan implementasi dari struktur dan algoritma untuk meningkatkan komunikasi, pengertian dan manajemen informasi medis.
4.    Cheminformatics
Cheminformatics adalah kombinasi dari sintesis kimia, penyaringan biologis dan pendekatan data-mining yang digunakan untuk penemuan dan pengembangan obat (Cambridge Healthech Institute’s Sixth Annual Cheminformatics conference).
5.    Genomics
Genomics adalah bidang ilmu yang ada sebelum selesainya sekuen genom, kecuali dalam bentuk yang paling kasar. Genomics adalah setiap usaha untuk menganalisa atau membandingkan seluruh komplemen genetik dari satu spesies atau lebih.
6.    Mathematical Biology
Mathematical biology menangani masalah-masalah biologi, namun metode yang digunakan untuk menangani masalah tersebut tidak perlu secara numerik dan tidak perlu diimplementasikan dalam software maupun hardware.
7.    Proteomics
Proteomics berkaitan dengan studi kuantitatif dan kualitatif dari ekspresi gen di level dari protein-protein fungsional itu sendiri. Yaitu: “sebuah antarmuka antara biokimia protein dengan biologi molekul”.
8.    Pharmacogenomics
Pharmacogenomics adalah aplikasi dari pendekatan genomik dan teknologi pada identifikasi dari target-target obat.
9.    Pharmacogenetics
Pharmacogenetics adalah bagian dari pharmacogenomics yang menggunakan metode genomik atau Bioinformatika untuk mengidentifikasi hubungan-hubungan genomik.

Perkembangan dan Penerapan Bioinformatika
Dunia memasuki babak baru yang diberi nama borderless world atau dunia tanpa batas. Perkembangan teknologi yang tiada henti memungkinkan manusia untuk berekspresi dan saling berkompetisi untuk menemukan bidang ilmu pengetahuan dan teknologi yang baru.
Salah satu perkembangan ilmu yang menggabungkan aspek teknologi informasi (TI) dan aspek biologi adalah Bioinformatika. Disiplin ilmu yang merupakan salah satu topik paling hangat dibicarakan dewasa ini dalam sejarahnya tak lepas dari perkembangan bioteknologi di era tahun 70-an dimana seorang ilmuwan AS melakukan inovasi dalam mengembangkan teknologi DNA rekombinan sehingga pada akhirnya lahir perusahaan bioteknologi pertama di dunia, yaitu Genentech di AS. Perusahaan ini memproduksi protein hormon insulin dalam bakteri yang dibutuhkan penderita diabetes dimana selama ini insulin hanya bisa didapatkan dalam jumlah sangat terbatas dari organ pankreas sapi.
Definisi Bioinformatika menurut Fredj Tekaia dari Institut Pasteur adalah: “metode matematika, statistik dan komputasi yang bertujuan untuk menyelesaikan masalah-masalah biologi dengan menggunakan sekuen DNA dan asam amino dan informasi-informasi yang terkait dengannya”.
Salah satu pencapaian besar dalam metode Bioinformatika adalah selesainya proyek pemetaan genom manusia (Human Genom Project). Selesainya proyek raksasa tersebut menyebabkan bentuk dan prioritas dari riset dan penerapan Bioinformatika berubah. Secara umum dapat dikatakan bahwa proyek tersebut membawa perubahan besar pada sistem hidup kita, sehingga sering disebutkan –terutama oleh ahli biologi—bahwa kita saat ini berada di masa pascagenom.
Tahun 1997, Ian Wilmut dari Roslin Institute dan PPL Therapeutics Ltd, Edinburg, Skotlandia, berhasil mengklon gen manusia yang menghasilkan faktor IX (faktor pembekuan darah), dan memasukkan ke kromosom biri-biri. Diharapkan biri-biri yang selnya mengandung gen manusia faktor IX akan menghasilkan susu yang mengandung faktor pembekuan darah. Jika berhasil diproduksi dalam jumlah banyak maka faktor IX yang diisolasi dari susu harganya bisa lebih murah untuk membantu para penderita hemofilia.

Kesimpulan
Dari bahasan diatas, dapat diambil sebuah kesimpulan bahwa ilmu Komputasi Modern itu dapat diterapkan dalam berbagai disiplin ilmu seperti ilmu Bioinformatika ini. Jadi, tidak menutup kemungkinan ilmu Komputasi Modern ini dapat berkembang lebih pesat menjamuri berbagai disiplin ilmu lainnya.

Hubungan antara Komputasi Modern dengan Paralel Processing

Hubungan antara komputasi modern dan parallel processing sangat berkaitan, karena penggunaan komputer saat ini atau komputasi dianggap lebih cepat dibandingkan dengan penyelesaian masalah secara manual. Dengan begitu peningkatan kinerja atau proses komputasi semakin diterapkan, dan salah satu caranya adalah dengan meningkatkan kecepatan perangkat keras. Dimana komponen utama dalam perangkat keras komputer adalah processor. Sedangkan parallel processing adalah penggunaan beberapa processor (multiprocessor atau arsitektur komputer dengan banyak processor) agar kinerja computer semakin cepat.

Kinerja komputasi dengan menggunakan paralel processing itu menggunakan dan memanfaatkan beberapa komputer atau CPU untuk menemukan suatu pemecahan masalah dari masalah yang ada. Sehingga dapat diselesaikan dengan cepat daripada menggunakan satu komputer saja. Komputasi dengan paralel processing akan menggabungkan beberapa CPU, dan membagi-bagi tugas untuk masing-masing CPU tersebut. Jadi, satu masalah terbagi-bagi penyelesaiannya. Tetapi ini untuk masalah yang besar saja, komputasi yang masalah kecil, lebih murah menggunakan satu CPU saja.


Sumber: